If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+20x-28=0
a = 8; b = 20; c = -28;
Δ = b2-4ac
Δ = 202-4·8·(-28)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-36}{2*8}=\frac{-56}{16} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+36}{2*8}=\frac{16}{16} =1 $
| 64x+20x=28 | | h/3=14 | | 3x-8=7x=12 | | 11x-6=8x+8 | | √(x)=192 | | x-30=4(x/2-30) | | 98=x-0.4x | | (5x+3)=(1-3x) | | 5n+13=15-3n | | n+6=2n+12 | | m+3=5m/2 | | (x+3)(x+29=360 | | x+0.49+x+0.49+1.11=10.25 | | y/3+y/5=16 | | 5.x=15 | | x+x+0.49+x+0.49+1.11=10.25 | | 9y-63=9 | | 2x^2-5x-88=6 | | 5t-5=19t | | X^2+3x+26=-6 | | 8x÷16-4=0 | | -8-2z=-16 | | _8_2z=_16 | | 5x^2+6x-368=0 | | 3y+7=6y-2 | | 14+4y=30 | | 8x=661 | | 11-(2x+4)=-5(x+4) | | 6x-9=-6x-4 | | 8-(2x+4)=24 | | 11-(2x+4)=5(x+4)+1 | | 44-(18+7x)=1-2x |